
The Michelson interferometer

In 1907, Albert Michelson won the noble prize for his work on measuring
the speed of light very accurately using a configuration known today as the
Michelson interferometer. Originally, Michelson built the interferometer to
investigate the existence of the mysterious ”ether”. It was thought for several
decades that the Earth floated in a fluid called ether as it went through its
orbit. The results of the famous Michelson-Morley experiment supported
the idea that there is no stationary medium through which light propagates,
which later formed the basis of Einstein’s theory of relatively. Later the
interferometer was used to measure the wavelengths of atomic spectral lines
with high precision, as well as displacements in terms of wavelengths of light.
This enabled scientists to develop high precision length standards as well as
improved methods for calibrating length measuring instruments.

1 Purpose of the exercise

• To use and understand the Michelson interferometer.

• To use the interferometer to measure the wavelength of laser light.

• To use the interferometer to measure the index of refraction of air.

• To investigate how changes in pressure affect the index of refraction.

2 Theory of the Michelson interferometer

In this experiment, you will use a Michelson interferometer to determine the
wavelength of laser light, as well as to investigate the index of refraction of
air and how it is affected by changes in pressure. A diagram of the Michelson
interferometer is shown in figure 2. Light from a monochromatic source (a
laser) passes through the beam splitter, producing two perpendicular beams
of equal intensity. The two beams are then reflected off two separate mir-
rors, and when they recombine at the beam splitter they will interfere with
each other. As you know from the lecture, whether the interference will
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Figure 1:

be constructive or destructive depends on the relative phase of each of the
combining beams. This relative phase is determined by the path length dif-
ference, 2d. The condition for constructive interference (the amplitudes add
to produce max intensity) is

2d = mλ (1)

where m is an integer and λ is the wavelength of the light. For destructive
interference, the recombining beams cancel each other out, and the condition
is

2d =
(
m +

1

2

)
λ (2)

so when the path length is an odd half integer multiple of the wavelength, the
recombining light beams will be exactly out of phase and thus the recombined
beam will have zero amplitude provided the amplitudes of the split beams
are equal.

By moving one of the mirrors, we can change the path length difference
and the relative phase of the light beams. As the path length difference
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Figure 2:

changes, we would see a continuous change from constructive interference
(with maximum brightness) through partial interference (with the spot fading
away) to destructive interference (the spot disappears) when the relative
distance is increased by one wavelength. In the laboratory you will see this
beautiful phenomenon.

For some purposes, like in this exercise, it is more practical to use a
dispersed beam instead of a thin collimated laser beam (as the one coming out
of the laser source). With a dispersed beam the interferometer produces an
interference pattern on the screen instead of a single point, and the principles
are shown in figure 2. This is also the kind of interference described in the
book on pages 193-196. In figure 2 the primary elements of the interferometer
are shown in a linear arrangement. The parallel beams reflected towards the
screen interact with each in a constructive or destructive manner, depending
on the path length difference. Naturally, the path length difference now
depends on the angle, θ, and is given by 2dcosθ similar to (8-1) in the book.
Since the path difference is dependent on the angle of the beam there will
be certain angles where there is constructive interference and certain angles
at which there is destructive interference, thereby producing an interference
pattern with bright and dark concentric circles. Just like in the previous
case. the condition for constructive interference is

2dcosθ = mλ (3)

which reduces to (1) for θ = 0 corresponding to the central spot in the
interference pattern.

3



2.1 Measuring the wavelength

When moving one of the mirrors in the interferometer with a dispersed beam,
the fringes of the interference pattern will move either outwards or inwards,
thus fringes are either annihilated or produced. The central spot of the inter-
ference pattern will alternate between bright and dark for every wavelength
the path length difference is changed, as discussed above. Therefore, very fine
control of the path length difference is required. The path length difference
is controlled by attaching a micrometer screw onto one of the interferometer
mirrors. The distance traveled by the mirror is equal to the change in the
mirror separation, ∆d. By counting the number of passing fringes corre-
sponding to a measured mirror displacement, it is possible to calculate the
wavelength of laser light. The number of fringes that have passed in a mirror
displacement, ∆d, is equal to the number of wavelengths that the path length
difference has changed. Hence, according to eq. (1) we find

λ =
2∆d

N
(4)

where N is the number of passing fringes corresponding to the mirror sepa-
ration ∆d.

2.2 Understanding the structure of the interference
pattern

To understand the origin of the interference pattern we investigate it a bit
further. In the exercise you will be asked to measure the fringe spacing of
the stationary interference pattern, and then compare it with the theory now
introduced. Given a constant path difference and constant wavelength, there
are values of θ and m that satisfy eq. (3), which correspond to each fringe.
So we have

2d cos θN = mNλ (5)

where θN is the angle of the N th fringe from the center of the interference
pattern, and mN is the integer number of wavelengths associated with the
N th fringe path difference. If we adjust d so that there is a fringe of maximum
brightness at θ = 0, then m0 is the value of m that satisfies eq. (3) for θ = 0.
So then 2d = m0λ and m0 is the integer number of wavelengths equal to
twice the mirror separation. Since neighboring fringes differ in path length
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difference by one wavelength, m0 − m = N . Combining all these equations
give the following relationship

cos θN = 1− Nλ

2d
(6)

By plotting the cosine of the fringe angle versus the fringe number, we see
how well the interference pattern matches the one predicted by the theory.

2.3 Measuring the refractive index

The interference pattern is sensitive to changes in the relative phase of the
two split beams. One can therefore use the interferometer to investigate how
transparent objects affect the phase of light placed in one of the interferomter
arms. In the experiment you will use an air tight cylinder with glass windows
on both faces. This air cell will be used to investigate the index of refraction
of the air inside.

As a light beam passes through a medium, the wavelength of light is de-
pendent on the index of refraction by the simple formula λ = λvac/n where λ
is the measured wavelength of the medium, λvac is the wavelength of the light
beam measured in a vacuum, and n is the refractive index of the medium.
The number of wavelengths that make up the path length in the air cell,
Ncell(p) is given by

Ncell(p) =
2t

λcell

=
2t

λvac

n(p) (7)

where t is the thickness of the cell, λcell is the wavelength of the light in the
cell, p is the pressure inside the cell, and n(p) is the index of refraction of air
at pressure p. Since the index of refraction is a function of pressure, so is the
number of wavelengths in the air cell.

Note that the index of refraction of vacuum is 1 and that it is always larger
for any other material. This means that the wavelength of a beam of light is
maximum in vacuum. Therefore, considering the air cell, the wavelength of
the light beam traversing it will increase as the air is evacuated. This means
that the fringes of the interference pattern will move as air is evacuated from
the cell. The number of passing fringes is equal to the change in the number
of wavelengths in the air cell. The number of passing fringes, Npass, at two
different pressures, patm (atmospheric) and p (arbitrary), is

Npass(p) = Ncell(patm)−Ncell(p) =
2t

λvac

(n(patm)− n(p)) (8)
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Figure 3:

Rearranging the equation we find

1− λNpass

2t
=

n(p)

n(patm)
(9)

where λ is the wavelength of laser light in air at atmospheric pressure. You
should use this expression to evaluate the index of refraction of air.

3 Experiment

3.1 (Building and) aligning the interferometer

Begin by aligning the interferometer. The instructor will help you doing this.

3.2 Measure the wavelength of light

You will now use the micrometer to measure the wavelength of the laser
light. Turn the micrometer screw slowly counter clockwise while counting
the number of passing fringes. After about 80 fringes have passed, record the
number of fringes as well as the mirror displacement from the micrometer
screw. Repeat the measurement a couple of times.

Make a table of values for the number of passing fringes, N , and the
corresponding change in mirror separation, ∆d, with errors. Include a column
of the calculated wavelength with error.
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3.3 The structure of the interference pattern

Adjust the micrometer screw so that the center of the interference pattern
is an illuminated dot of maximum brightness. This implies that there is
constructive interference at θ = 0 and eq. (1) is satisfied. Measure the
radius of each fringe from the center of the interference pattern using the
ruler. Record the radius and the corresponding fringe number. Measure the
distance from mirror 1 to the wall with a meter stick. From the fringe radius
and the distance to the wall, one can determine the angle of the fringe, θ, in
order to compare with the predictions made by eq. (6).

Make a table of values for the fringe number, N , with the corresponding
fringe radius as measured with errors. From the fringe radius and the wall
distance, calculate the cosθ value for each of the fringes, with errors. For this
calculation you can assume the beam is perpendicular to the wall and that
the beam does not strike the mirrors far from the center. Plot (1 − cosθ)
versusN . Is it a linear relationship with reasonable slope and intercept?

3.4 Measure the refractive index of air

Start by recording the air pressure with a barometer. Place the air cell in the
beam path between the beam splitter and mirror 1, and be sure that the air
cell is parallel with the beam path. Press the pressure release button on the
pump so that the pressure in the air cell is equal to atmospheric pressure.
Record the initial pressure reading. Then slowly squeeze the pump until the
fringe interference pattern has completed one cycle, and record the pressure
again. Repeat this process until the pressure reaches the minimum value and
the pump can no longer evacuate air from the cell (when you are finished
remember to press the pressure release button).

Make a table of values for the number of passed fringes, Npass(p), and
the corresponding pressure, p, as measured and evaluate the possible errors.
Include a column of the calculated n(p)/n(patm) values. Then plot (1 −
n(p)/n(patm)) versus p with error bars. Extrapolate the plot to find the
(1 − n(p)/n(patm)) value at zero pressure. From the intercept, obtain the
index of refraction of air at atmospheric pressure.
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4 To be included in assignment 2

1. A table of values for the number of passing fringes, N, and the cor-
responding change in mirror separation, ∆d, with errors. Include a
column of the calculated wavelength with error, and compare your
wavelengths with the expected wavelength (expected is 532nm).

2. A table of values for the fringe number, N, with the corresponding fringe
radius as measured with errors. From the fringe radius and the wall
distance, calculate the cosθ value for each of the fringes, with errors.
For this calcualtion you can assume the beam is perpendicular to the
wall and that the beam does not strike the mirrors far from the center.

3. A plot of (1−cosθ) versus N, with error bars. Is it a linear relationship
with reasonable slope and intercept? Comment on whether or not the
fringe spacing is consistent with equation (6).

4. A table of values for the number of passed fringes, Ndiff (p), and the
corresponding pressure, p, as measured in experiment where the refarc-
tive index of air is to be determined. Include a column of the calculated
n(p)/n(patm) values.

5. A plot of (1 − n(p)/n(patm)) versus p with error bars. Extrapolate
the plot to find the 1− n(p)/n(patm) value at zero pressure. From the
intercept, obtain the index of refraction of air at atmospheric pressure.
Compare your measured value of the index of refraction of air with the
accepted value of 1.00025.
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